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Two-Phase Resampling for Noisy Imbalanced
Multi-class Classification Problems and its
Application in Human Activity Recognition

Jianjun Zhang, Wing W. Y. Ng*, Shuai Zhang, and Chris D. Nugent

Abstract—Current imbalanced classification research mainly
focuses on two-class imbalanced problems. However class im-
balance issues are more serious in multi-class problems, e.g.
human activity recognition. Multi-minority and multi-majority
make multi-class imbalanced problems more challenging. Re-
sampling methods are effective to handle class imbalance issues
by rebalancing the class distribution, but current methods tend
to apply resampling on all samples including noisy ones, which
may participate in classifier training and therefore hinder the
performance of the classifier. Hence, in this work, we propose
a Two-Phase Resampling (TPRS) method, for multi-class noisy
imbalanced problems. In Phase one, a one-vs-one scheme is
applied to iteratively remove noisy samples in each class by
evaluating the stochastic sensitivities of the training samples.
In Phase two, an oversampling method is applied on each
minority class to relatively rebalance the class distribution. After
completing the TPRS, a multi-class classifier is trained using
the noise-filtered rebalanced training dataset. To evaluate the
effectiveness of the TPRS, nine UCI datasets and one real-world
sensor-based human activity recognition dataset with five levels
of noises are employed in the experimental studies. Experimental
results show that the TPRS yields relatively stable performances
as the noise level increases and significantly outperforms state-
of-the-art methods especially in highly noisy environments.

Index Terms—Class imbalance, class noise, resampling, multi-
class classification, human activity recognition.

I. INTRODUCTION

PATTERN classification problems have gained a lot of
attentions in recent years and are the core components

of many different applications, for instances smart home,
fitness tracking, medication reminders, and health monitoring
[1]. Yet in many real-world pattern classification problems,
different issues are often encountered that make the classi-
fication problems more difficult and complex, for example
class imbalance. Class imbalance problems occur when one
class severely out-represents another [2], i.e. the number of
samples in at least one class is either much more or less
than other classes. When class imbalance occurs, traditional
classifiers are often biased to the majority class and yield very
low accuracy for the minority class, which is not preferable
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because misclassifying minority samples are often costly than
misclassifying majority ones [3]. Many efforts have been
focused on two-class imbalanced problems, but in practice
many problem domains contain more than two classes with
unbalanced class distributions. In human activity recognition
(HAR) problems, the durations of the transitional activities
(e.g. walk-to-stand or stand-to-sit) between the main activities
(e.g. walking or sitting) are usually very short which results in
some classes (e.g. walking and sitting) consist of many more
samples than others (e.g. walk-to-stand and stand-to-sit).

Multi-class imbalance problems bring new challenges com-
pared with two-class imbalance problems: decision boundaries
between classes may severely overlap [4], and the relations
among the classes are no longer obvious [5]. In multi-class
imbalance problems, both multi-majority and multi-minority
may exist, which will negatively affect the classification
performances and simple resampling methods do not yield
satisfactory results [6]. Methods designed for binary-class
imbalance problems may not be directly applied for multi-class
ones or suffer from low performance [7]. Among current liter-
ature on multi-class imbalance problems, class decomposition
techniques, cost sensitive methods, and resampling methods
are often applied. Class decomposition techniques normally
consists of two categories, the one-against-one (OAO) and the
one-against-all (OAA) [8]. Drawbacks of both methods are
obvious: the OAO has higher time complexity for constructing
more classifiers while the OAA suffers more severe class
imbalance when the dataset is originally imbalanced. A sys-
tematic study was carried out and showed that the combination
of OAO and OAA with resampling methods and cost sensitive
learning produce promising results [9]. Cost-sensitive methods
usually modify the loss function of specific classifiers or
assign different weights to samples according to their costs in
order to minimize the overall costs instead of minimizing the
overall error as before [10]. Cost-sensitive methods are mainly
specialized for certain types of classifiers, for examples neural
networks [7], SVMs [11][12][13], etc. Resampling methods
are designed to rebalance the prior probabilities of all classes
and are independent of classifiers. In the multi-class imbalance
scenario, most resampling methods are focused on modify-
ing existing methods designed for binary-class imbalanced
problems by integrating class decomposition techniques, cost
sensitive learning or ensemble learning methods. For instances,
Lin et al. [14] and Fernandez-Navarro et al. [15] combined
resampling and cost sensitive learning to train neural networks.

As pointed out in [3], some problems frequently coexist



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

with class imbalance and further contribute to degrade the
performance of predictive models, for example class noise
[16]. In class imbalance domains, the least-represented classes
(minority class) are more negatively affected by noisy data
[17], and more generally, class noise has more significant
impact on learning models than class imbalance [18]. The
interaction between the levels of imbalance and the levels of
noise is a relevant issue and the two aspects should be studied
together [3] [19]. Understanding the effects of class noise on
learning models in imbalanced data environments may help
provide valuable insights into the general problem of class
imbalance [20]. Without properly handling the noisy data in
the class imbalance domains, classifiers trained using these
noisy imbalanced data may yield very poor generalization
capability on not only the minority classes but also the
majority ones. However, to date, few studies are focused on
handling both issues. Among very limited related researches,
some works propose to combine the resampling methods and
some noise filtering techniques, for example the K-Influential-
Neighbor OverSampling (KINOS) [21] and the noise-filtered
undersampling (NUS) [22]. These methods mainly utilized
a k-nearest neighbors-based noise filter to identify noisy
data, but searching optimal k values for different datasets is
very time consuming. More importantly, these noise handling
methods do not necessarily lead to a more robust classifier
because they focus on removing noisy samples only and ignore
information from classifier training.

In this work, we propose the Two-Phase Resampling (T-
PRS) method to deal with the noisy imbalanced data. We
mainly focus on multi-class problems in this paper since
they are more prevalent in real-world applications. In the first
phase of TPRS, a stochastic sensitivity-based noise filtering
procedure is firstly applied to identify and remove noisy
samples in all classes. Samples are evaluated by computing
their stochastic sensitivities using a neural network ensemble.
Samples with higher stochastic sensitivities are more likely
to be misclassified and more likely yield negative impacts
on classifier training, therefore these samples are treated as
noises and removed. In the second phase, an oversampling
procedure is employed to rebalance the class distribution. After
the TPRS, a multi-class classifier is trained using the noise-
filtered rebalanced dataset.

The major contributions of this paper are listed as follows:
1) A Two-Phase Resampling (TPRS) method is proposed

to handle both class noise and class imbalance problems.
Class noise is identified via evaluating the training
samples’ stochastic sensitivities and class imbalance
is handled by employing an oversampling procedure.
By removing noisy samples before executing oversam-
pling, the performance of the oversampling is enhanced
and classifier trained using the noise-filtered rebalanced
dataset yields higher generalization capability.

2) The TPRS serves as a wrapper method and is inde-
pendent of classifiers. It is feasible to employ different
oversampling methods and different types of classifiers,
which shows the flexibility of the TPRS.

3) To evaluate the performances of the TPRS, comprehen-
sive experimental studies are carried out based on nine

UCI datasets and a real-world human activity recogni-
tion dataset. Five levels of class noises are introduced
into the datasets to analyze the effects of both the class
noise and class imbalance. Experimental results show
that the TPRS significantly outperforms the state-of-the-
art methods.

The rest of this paper is organized as follows: Section II
briefly describes related works. The TPRS is proposed in
Section III. A comprehensive experimental study is conducted
in Section IV. Section V gives a case study on human activity
recognition task using sensor data. Conclusions and future
works are given in Section VI.

II. RELATED WORKS

In this section, we mainly reviews works related to class
noise problems and class imbalance problems, in particular da-
ta resampling methods, because this work focuses on applying
resampling methods to handle class imbalance problems.

A. Methods for Handling Class Noise Problems

Class noise handling aims to train a robust classifier with
respect to class noises. One of the common approaches in
this area is to eliminate noisy samples via a noise filter
so as to produce a dataset with high quality [23] [24].
Numerous noise filtering approaches were proposed, including
the Classification Filter (CF) [25], the Ensemble Filter (EF)
[26], the Cost-Guided Iterative Classification Filter (CICF)
[27] and the Iterative Partitioning Filter (IPF) [28]. The CF
identifies noises using a cross validation procedure, where
the misclassified samples in each validation set are treated
as noises and removed when all validations have finished. In
contrast, the EF trains a set of classifiers using each validation
set and each of them is evaluated using all samples, where
samples that are misclassified by all classifiers or at least
half of the classifiers are treated as noises and removed. The
CICF extends the CF by integrating a cost-guided rejection
sampling procedure [29]. If a misclassified sample yields
higher misclassification cost, it has higher probability to be
retained in the dataset to avoid removing important informative
data. The IPF is the extension of the EF which iteratively
removes noisy samples until the number of identified noisy
samples is less than a certain threshold in one iteration.

B. Methods for Handling Class Imbalance Problems

Resampling methods are widely applied to handle class
imbalance problems by either oversampling the minority
classes or undersampling the majority classes to rebalance
the class distributions. Resampling methods can be basically
categorized into three types, undersampling, oversampling, and
hybrid.

Undersampling removes samples from majority classes to
relatively rebalance the class distribution, which alleviates
the class imbalance issue and lower the computational costs.
The simplest undersampling method is to randomly remove
some majority samples so as to achieve an equal number of
samples among classes. This, however, may lead to severe
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information loss and result in insufficient samples for classi-
fier training. To avoid this problem, informed undersampling
methods are proposed. Lin et al. proposed to cluster majority
classes into several clusters with the number of clusters being
the number of minority samples and select those samples
located nearest the cluster centers as candidates [30]. These
candidates are combined with original minority samples to
create a balanced dataset. Similarly, the Diversified Sensitivity
Undersampling clusters both classes and iteratively selects a
balanced dataset from these clusters to retrain an RBFNN [31].
The clustering procedures aims to preserve the data distribu-
tions of both classes to avoid information loss. Recently, a
weighted undersampling scheme for SVM [32] was proposed
to handle imbalanced classification problems, which groups
majority samples into several sub-regions and assigns different
weights to these regions by considering their distances to the
hyperplane. Samples in the sub-region with higher weights
have higher probability to be selected, in which way data
distribution information is retained.

Oversampling replicates or generates new minority samples.
The random oversampling method replicates some minority
samples to rebalance the class distribution, which may easily
lead to overfitting. One of the most popular oversampling
methods is the Synthetic Minority Oversampling TEchnique
(SMOTE) [33], which generates new samples along line
segments connecting candidate minority sample and its k-
nearest neighbors. The major drawback of the SMOTE is
that noisy samples may participate in the data generation
procedure, which leads to severe overlapping and new noises
introduced. Other minority samples generating methods in-
clude the Random Walking Oversampling (RWO) [34] and the
Mahalanobis Distance-based Oversampling technique (MDO)
[35]. The RWO applies the standard normal distribution to
approximate the underlying distribution of numeric features
and generates new samples from this distribution, while the
MDO generates new samples by maintaining the same Ma-
halanobis distance from the mean of minority class. These
two methods are basically applicable for numeric features. The
Adaptive MDO (AMDO) [36] extends the MDO for mix-type
features by introducing the Heterogeneous Value Difference
Metric (HVDM) [37] as the distance metric to handle nominal
features.

Hybrid methods usually combine an ensemble learning
method with undersampling or oversampling. For examples
the RUSBoost [38] integrates the random undersamping in
the boosting iteration, the UnderBagging undersamples the
majority class and combines with minority class to create bal-
anced bags for classifier training [39], the UnderOverBagging
varies the proportions of original data and the resampled data
so that a series of diverse subsets are created [40], and the
SMOTEBoost [41] differs from the RUSBoost by employing
the SMOTE instead of random undersampling to rebalance
the class distribution. Recently a new method combining
SMOTE and transfer boosting to rebalance the skewed class
distribution is proposed, which integrates the oversampling
in the transfer AdaBoost framework [42]. The EasyEnsemble
and the BalanceCascade [43] are two effective undersampling-
based hybrid methods, which undersamples multiple subsets

from the majority class and combines with the minority class.
These balanced subsets are used to train several classifiers
using AdaBoost and these classifiers are fused together, so
the output of these two methods is ensemble of ensemble.

C. Methods for Handling Both Class Noise and Class Imbal-
ance Problems

Existing methods for handling both class noise and class
imbalance problems mainly focus on extending the popular
oversampling method SMOTE by introducing some kinds
of methods to identify noisy samples. For examples the
Borderline-SMOTE [44] generates new samples using only the
borderline samples to avoid adding new noises and the Majori-
ty Weighted Minority Oversampling TEchnique [45] generates
new samples inside minority class clusters. In contrast, the
Synthetic Minority Oversampling for Multi-class imbalance
problems (SMOM) assigns different selection weights for each
neighbor direction such that a direction is assigned less weight
if generating new samples in this direction would introduce
noisy samples or increase the overlapping level [46]. Several
methods are proposed to remove the noises introduced by the
SMOTE. The SMOTE-ENN [47] employs the Edited Nearest
Neighbors method [48] to remove noisy samples in both class-
es, in which noisy samples are those misclassified by the three-
nearest neighbor algorithm. Similarly, the SMOTETOMEK
[47] removes the Tomek Links [49] and the SMOTE-IPF [23]
removes noises using the IPF after applying the SMOTE,
respectively. Recently, a new method KINOS was proposed
to firstly under-sample the minority class to reduce the noises
in the minority class, then apply the over-sampling method on
the noise filtered dataset [21]. Noises, however, are put back
to the dataset after the oversampling to avoid information loss.

Few methods are focused on combining noise filter and
undersampling, with the NUS [22] being an exception. The
NUS claims to be the first method that combine a noise
filter and undersampling to boost a classifier’s performance,
in which a k-nearest neighbors-based noise filter is firstly
applied to remove noises from both classes followed by an
undersampling procedure.

1) Subsubsection Heading Here: Subsubsection text here.

III. TWO-PHASE RESAMPLING METHOD

In this section, the definition of the stochastic sensitivity
measure and the details of the proposed TPRS are given in
Section III-A and Section III-B, respectively.

A. Stochastic Sensitivity Measure

To evaluate the stability of a classifier, small random per-
turbations are added to training samples based on which the
classifier was trained. If the classifier outputs are severely
fluctuated by these small perturbations in inputs, the classifier
is sensitive to the training samples or the training samples
have high sensitivities with respect to the classifier. Training
samples with high sensitivities are more likely to be misclas-
sified by the classifier since a minor perturbation in the input
leads to a severe fluctuation of the classifier output. These
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samples are more likely to be noisy samples because classifiers
are expected to perform well on normal samples. Therefore,
sensitivity of a sample could be used as a heuristic to identify
noisy samples in a dataset.

In this work, we define the sensitivity of a training sample x
as the proportion of randomly perturbed samples with different
predicted labels from the true label y of x and name it as
the Stochastic Sensitivity Measure (SSM ). It is formulated as
follows:

SSM(x, h) =

∑β
i=1 |y − h(x(i))|

β
(1)

where x, y, β, and h(·) ∈ {0, 1} denote a given training
sample, the true label of x, the ith perturbed samples around
x, the number of perturbed samples, and the predicted label
given by the classifier h, respectively. The perturbed samples
are created via a small perturbation of the input of the training
sample and are located in a region which we name as Q-
neighborhood. The Q-neighborhood of a training sample x is
defined as follows [50]:

SQ(x) = {xp|xp = x+∆x, |∆xi| ≤ Q, i = 1, 2, . . . , n} (2)

where xp, ∆x, ∆xi, Q, and n denote the perturbed sample,
the magnitude of perturbation to the training sample, the
magnitude of perturbation to the ith feature of the training
sample, the maximum magnitude of perturbation, and the
number of features, respectively. A Q = 0.1 means that
a maximum deviation of 10% from the training sample is
allowed for perturbations [51].

Samples located within the Q-neighborhood of a training
sample are expected to share similar information with the
training sample and therefore belong to the same class as
the training sample. A training sample yielding a large SSM
value indicates that a classifier trained on these data has high
possibility to misclassification because small input perturba-
tions lead to large fluctuations of classifier outputs. Therefore,
samples that yield high SSM values are more likely to be
noisy samples with regard to classifier training.

Evaluating the SSM value of a sample using only one
classifier may yield a high variance, moreover a classifier
trained using an imbalanced dataset may be biased to the
majority class because it tends to classify most samples as the
majority class. Therefore, a neural network ensemble trained
via a balanced bagging method is employed in this work to
evaluate the SSM values of the training samples, which is
formulated as follows:

SSM(x,H) =

∑∥H∥
t=1 SSM(x,H(t))

∥H∥
(3)

where H(t) and ∥H∥ denote the tth base classifier in ensem-
ble H and the number of base classifiers in H , respectively.
The mean value of the SSM values of each training sample
yielded by all the base classifiers in H is utilized as the final
SSM value of each sample. The balanced bagging method is
employed to train a neural network ensemble based on several
balanced datasets by resampling the same number of samples
from each class, which is given in Algorithm 1.

Algorithm 1 Balanced Bagging
Require:

training dataset D, number of base classifier T , learning
algorithm L

Ensure:
Ensemble of base classifier H

1: For t = 1 to T

1) Set sub-training dataset U = ∅
2) Draw ∥D∥/2 samples from each class randomly with

replacement and put them in U
3) Train a base classifier H(t) based on U using learn-

ing algorithm L

EndFor
2: H = argmax

y

∑
t:H(t)(x)=y 1

Algorithm 2 SSM-based Noise Filter
Require:

training dataset D containing K classes, threshold λ,
number of base classifiers T

Ensure:
noise-filtered dataset D′

1: For u = 1 to K − 1

1) For v = u+ 1 to K

a) Train an ensemble H containing T neural net-
works based on samples from class u and v using
balanced bagging

b) Compute the average SSM value of each train-
ing sample from class u and v via H using
formula (3)

c) Remove samples yielding SSM(x(i),H) > λ

EndFor
EndFor

2: Set the filtered dataset as D′

Algorithm 3 TPRS
Require:

training dataset D, threshold λ, oversampling method,
number of base classifier T , learning algorithm L

Ensure:
noise-filtered rebalanced dataset D∗, and a trained clas-
sifeir H∗

1: Remove noises in D using SSM-based noise filter and get
a noise-filtered dataset D′

2: Apply oversampling on D′ to get noise-filtered rebalanced
dataset D∗

3: Train a final classifier H∗ using L based on D∗

这篇文章与那篇用ST-SM挑选样本进而平衡多数类和少数类的文章的出发点不同，前者(本文)假设的是分类器是一个好的分类器，我们需要通过它来过滤样本；后者则假设样本是好的样本，分类器需要不断学习这些样本。





















这里是针对二分类的SSM的计算公式。故h的取值为0或1。

实战心得：
采用有放回抽样，
如果噪声样本的比例比较大时，
则可能使得学习的分类器错把正常样本当成噪声样本
（事实上分类器的训练样本便是以噪声样本为主）

PS：
有放回抽样通常会造成过拟合问题
这样的话其实也会存在这么一种可能：
即使分类器是在正常样本上训练而来，
但是其仍然可能将另一部分没见过的正常样本错分

解决办法：
增加基分类器的数目，即采用有放回抽样多次
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B. Framework of the Two-Phase Resampling Method (TPRS)

The Two-Phase Resampling (TPRS) method consists of two
phases: noise filtering, and oversampling. Details of these
phases are given in this section.

The first phase of TPRS employs the SSM-based noise filter
to remove noises in all classes. Samples with SSM values
higher than a pre-selected threshold λ are identified as noises
and removed. In fact, the threshold controls how conservative
one treats a sample as noise. The smaller the threshold, the
more training samples are regarded as noises. In contrast, a
too large threshold leads to very few noisy samples can be
recognized and the performance of the oversampling method
will be hindered. The threshold used in this work is 0.5,
meaning that a training sample is regarded as noise if at
least half of the neural networks are likely to misclassify this
sample.

Since a dataset contains more than two classes in this
work, an OAO scheme is utilized to decompose the multi-
class problems into several two-class problems. Individual
two-class problem is tackled by an ensemble as introduced
in Section III-A. If the balanced bagging is directly applied
on the whole dataset, a very complex decision boundary may
be learnt which brings negative impacts on the performance of
the noise filter especially when the number of classes is large.
In an extreme case, all samples from some classes could be
wrongly recognized as noises and removed because of the poor
decision boundary learnt. The decomposition helps alleviate
the negative effects of complex decision boundary because
there are only two classes to be learnt. Applying the OAA
scheme may produce similar results as that of directly applying
balance bagging on the whole dataset, since relations between
one class and other individual classes are hidden by merging
other classes as one class. The details of the SSM-based noise
filter are given in Algorithm 2.

The second phase of TPRS is to apply an oversampling
procedure on the noise-filtered dataset obtained from the
first phase to rebalance the class distribution. Any type of
oversampling methods can be applied here, for instances the
random oversampling or the SMOTE. Since the noises have
been removed, new noises are not likely introduced in the
dataset and the representation of minority classes can be safely
enhanced.

After executing the TPRS, a multi-class classifier is trained
using the noise-filtered rebalanced dataset obtained from the
first and second phase. The classifier is expected to yield
high robustness with respect to noises and high generalization
capabilities, because both class noise and class imbalance
issues have been properly handled.

The pseudocode of TPRS is given in Algorithm 3.

IV. EXPERIMENTAL STUDIES

In this section, we evaluate the effectiveness of the TPRS.
In the experimental studies, Multi-Layer Perceptron Neural
Network (MLPNN) has been used as the classifier in all
methods for a fair comparison. However, the classifier can
be of any chosen classifier. Section IV-A provides the exper-
imental setup, Section IV-B shows the experimental results

with discussions, and Section IV-C discusses the reason of the
effectiveness of TPRS.

A. Experimental Setup

Nine multi-class datasets from the UCI dataset repository
are used in the evaluation [52]. Characteristics of datasets,
with respect to the number of features, the number of classes,
the number of samples, the imbalance ratio and the class
distribution are given in Table I. Imbalance Ratio (IR) is
defined as the number of samples from the largest class divided
by the number of samples from the smallest class. Majority
classes are those classes containing more than average number
of samples in a dataset and the rest classes are minority
classes. For some of the datasets which are not imbalanced
(i.e., ”image-segmentation” and ”iris”), synthetic imbalanced
dataset is generated, as suggested in [14], by random under-
sampling of some classes.

The performance metric adopted for this work is the
Geometric-mean (G-mean), which is a commonly used metric
for imbalanced classification problems. The G-mean takes the
accuracy of each class into account and is defined in formula
(4), where TPR represents the true positive rate or accuracy
of each class.

G−mean =

√√√√ K∑
i

TPRi (4)

For the performance evaluation, a ten-time independent
runs are employed for each dataset and the average result is
recorded for performance comparison. For each repetition, the
dataset is randomly split into two halves, one for training and
the other for testing.

To compare the difference among methods, as suggested in
[53], a one-sided Wilcoxon signed-ranks test [54] is employed
with significance level of 95%. The Wilcoxon signed-ranks
test is a non-parametric test to detect significant differences
between two sample means, which ranks the differences in
average performances for each dataset, ignoring the signs and
compares the ranks for the positive (the TPRS) and negative
(compared method) differences. If the negative differences are
lower than a critical value, then the TPRS significantly outper-
forms the compared method. The Friedman’s test with a post-
hoc Hochberg’s test [55] will be also applied to compare the
proposed method with other methods over multiple datasets.

The proposed approach is compared with a number of
resampling techniques, namely the standard SMOTE (smote),
the Borderline-SMOTE-1 (bsmote1), the Borderline-SMOTE-
2 (bsmote2), the SMOTE-TOMEK (stomek), and the KINOS
(kinos) with SMOTE as the oversampling method. All methods
except the SMOTE are oversampling method combined with
some kind of mechanisms to handle noises, where the SMOTE
is used as the baseline to see if noise handling is effective.
The parameter setting for each method is given in Table II. A
single classifier trained using a dataset with no pre-processing
(named as ”none” in the experiment) is also included as the
baseline.
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TABLE I
CHARACTERISTICS OF UCI DATASETS

dataset #features #samples #classes IR class distribution
cardiotocography 21 2126 10 10.92 384/579/53/81/72/332/252/107/69/197

dermatology 34 358 6 2.31 111/60/71/48/48
image segmentation 19 630 7 6.6 50/50/50/50/50/50/330

iris 4 110 3 1.67 30/30/50
new thyroid 5 215 3 5 150/35/30

splice 60 3190 3 2.16 767/768/1655
thyroid ann 21 7200 3 40.16 166/368/6666

wine 13 178 3 1.48 59/71/48
wine white 11 4873 5 13.48 163/1457/2198/880/175

Note: The first six classes in dataset ”image-segmentation” are undersampled to contain only 50 samples to create an imbalanced class distribution. The first
two classes in dataset ”iris” are undersampled to contain only 30 samples.

TABLE II
PARAMETER SETTING FOR EACH METHOD

Algorithm Parameters
none No parameters to be set
smote k=3
bsmote1 k=3, m=10
bsmote2 k=3, m=10
stomek k=3
kinos smote as oversampling method with k=3, kin k=15, kin tau=1
tprs smote as oversampling method with k=3, Q=0.1, λ = 0.5,T = 5,β=50

To analyze the extent to which different methods handle
noisy imbalanced datasets, various amount of additional noise
has been introduced to the training datasets, for the datasets
which contain little noises. We adopt a pair-wise noise intro-
duction schema as follows: given a pair of classes (y1, y2) and
a noise level ρ, an instance with label y1 has a probability
of ρ to be incorrectly labeled as y2, so does an instance
with label y2. This mechanism was proposed by Zhu et al.
[24], claiming that in realistic situations, only certain types
of classes are likely to be mislabeled. In this work, we only
corrupt the training dataset and every majority sample has
a probability ρ to be mislabeled as minority class and vice
versa. For example, given a training dataset with four classes
where class 1 and 2 are majority class and class 3 and 4 are
minority class, to corrupt this training dataset with a noise
level of 5%, each sample has 5% of chance to be selected
to be corrupted. If a majority sample is selected, a minority
class (class 3 or 4) is randomly assigned to it. Similarly, if a
minority sample is selected, then a majority class (class 1 or 2)
is randomly assigned to it. Five levels of noises are introduced
in the training datasets in this work: 5%, 10%, 20%, 30%, and
40%.

B. Experimental Results and Discussions

In this section, experiments are conducted to show how
different methods handle noises under different noise levels.

The trends of G-mean values yielded by different methods
on different datasets by varying the noise levels are given in
from Fig. 1 to Fig. 9, where the x-axis represents the noise
level and y-axis the G-mean. In these figures, the ”none”,
”smote”, ”bsomte1”, ”bsmote2”, ”stomek”, ”kinos” and ”tprs”
are marked in red circle, green cross, blue pentagram, light
blue upward-pointing triangle, brown square, yellow diamond,
and magenta asterisk, respectively. Fig. 10 gives the average

performance of different methods by varying the noise levels.
From these figures, several important observations should be
addressed:

1) As the noise level increases, all methods are prone to
decreasing the performances on all datasets in terms
of G-mean no matter what levels of class imbalance
occur in these datasets. This is not surprising because
as the noise level increases, the learning complexity of
the imbalanced datasets grows and results in very poor
training of classifiers.

2) Although all methods suffer from performance deteri-
oration as the noise level increases, the ”tprs” yields
the best performances among all methods in almost all
datasets under all noise level settings with very few
exceptions. Moreover, the performance gaps between the
”tprs” and other methods tend to enlarge as the noise
level increases. These show the robustness of the ”tprs”
with respect to different imbalance ratios and different
noise levels.

3) From Fig. 10, the benchmark models ”none”, marked
in red circle usually yields the worst results in all
noise level settings in average. This is intuitive because
without properly handling both the class noise and class
imbalance issues in the dataset, on which a classifier
trained is not expected to yield a high generalization
capability. This confirms the necessity of techniques to
tackle both class imbalance and class noise problems.
The ”tprs” yields the best average results in all settings.
Additionally, the performance gains compared with oth-
er methods are prone to getting larger as the noise level
increases, which shows the effectiveness of the ”tprs”
especially in environments with high noise levels.

Table III shows the Wilcoxon signed-ranks test results by
giving the p-value of the comparison between each method and
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Fig. 10. Average Performances of Different Methods by Varying Noise Levels

the TPRS. In Table III, a method yielding a p-value smaller
than 0.05 indicates that the ”tprs” significantly outperforms the
corresponding method. p-values larger than 0.05 are highlight-
ted in bold face. From Table III, one can see that the ”tprs”
significantly outperforms the ”none” and the ”bsmote2” when
the noise level is 0%. As the noise level increases, the ”tprs”
outperforms all other methods significantly, which again shows
the effectiveness and robustness of the ”tprs” in highly noisy
imbalanced environments.

Table IV reports the results of Friedman’s test and the post
hoc Hochberg’s test in terms of G-mean. Values in the row
”p-F” indicates the p-value computed by the Friedman’s test.
A p-F value lower than 0.05 means that there is significant
difference between methods in comparisons and the post hoc
test is then applied to find out which methods are yielding
significantly different performances. The p-H columns give
the p-value computed by the post hoc Hochberg’s test, a value
of which lower than 0.05 indicates that the ”tprs” significantly
outperform the corresponding method. p-H values higher than
0.05 are highlighted in bold face. From Table IV, the ”tprs”
always yields the lowest rank in all noise setting, which is why
the ”tprs” is used as the control method used in Friedman’s
test. All p-F values are lower than 0.05, which allows the post
hoc Hochberg’s test to be executed. The ”tprs” outperforms the
”none” and the ”bsomte2” significantly when the noise level
is 0% and 5%, given by the facts that their p-H values are
lower than 0.05. There are no significant differences between
the ”tprs” and the other methods when noise level is 0% and
5%, though one should notice that the ”tprs” ranks the first
in both settings. As for other noise level settings, the ”tprs”
yields significantly better performance than all other methods
in comparisons.

C. Why the TPRS Works

In this work, the oversampling procedure applied in the
methods in comparisons is the off-the-shelf SMTOE. The
major differences between the TPRS and other resampling
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TABLE III
WILCOXON TEST RESULTS BY TAKING THE TPRS AS CONTROL METHOD

method
noise level

0% 5% 10% 20% 30% 40%
none 0.009766 0.00586 0.003906 0.003906 0.0019532 0.0019532
smote >0.2 0.0371 0.00586 0.003906 0.0019532 0.0019532

bsmote1 0.10546 0.019532 0.009766 0.0019532 0.0019532 0.0019532
bsmote2 0.00586 0.003906 0.003906 0.0019532 0.0019532 0.0019532
stomek 0.19336 0.0371 0.00586 0.003906 0.0019532 0.0019532
kinos >0.2 0.013672 0.019532 0.0019532 0.0019532 0.0019532

TABLE IV
RESULTS ON FRIEDMAN’S TEST. THE P-F IS THE P-VALUE COMPUTED BY THE FRIEDMAN’S TEST AND P-H IS THE ADJUSTED P-VALUE COMPUTED BY

THE POST HOC HOCHBERG’S TEST

noise level 0% 5% 10%
methods rank p-H rank p-H rank p-H

tprs 2.7 N/A 2 N/A 1.6 N/A
none 5.85 0.00556 5.1 0.006664 4.8 0.004625
smote 2.75 0.958724 3.5 0.147299 3.5 0.049219

bsmote1 4.6 0.196877 3.9 0.147299 4.7 0.005332
bsmote2 5.9 0.005552 6.4 0.000032 5.5 0.000325
stomek 3.4 0.958724 3.7 0.147299 4.4 0.011257
kinos 2.8 0.958724 3.4 0.147299 3.5 0.049219
p-F 0.000167 0.000337 0.001835

noise level 20% 30% 40%
methods rank p-H rank p-H rank p-H

tprs 1.3 N/A 1 N/A 1 N/A
none 5 0.000641 5.7 0.000007 6.2 0
smote 3.8 0.017279 4 0.00011 4.6 0.000777

bsmote1 4.7 0.001731 4.7 0.000513 3.7 0.010387
bsmote2 5.6 0.000051 5.1 0.003802 4.8 0.000419
stomek 3.6 0.017279 3.5 0.003802 3.2 0.022773
kinos 4 0.015581 4 0.009661 4.5 0.000874
p-F 0.000383 0.000046 0.000007

methods equipped with a noise filter are twofold. Firstly, the
oversampling procedure is applied after the noise filtering
procedure. In this way, new noises are not likely be introduced
in the dataset and participate in the classifier training. The
STOMEK applies the noise filter after the oversampling. This
may result in that newly introduced noisy samples form several
small clusters, which are difficult for the k-nearest neighbors-
based method to identify as noises and thus the de-noising
performance is jeopardized. Secondly, unlike the k-nearest
neighbors-based method, the noise filter employed in this work
is based on evaluating stochastic sensitivities of the training
samples, which takes the classifier training into account. The
SSM-based noise filter naturally takes the classifier training
into account by removing samples that are very hard for
classifiers to learn, which makes the boundary between classes
more clear and relives the overlapping issues among classes
to some extent.

To show the performance gains in terms of G-mean of
the TPRS by integrating the SSM-based noise filter and
oversampling, Fig 11 shows the average gains of the TPRS
in different noise level settings over all datasets compared
with the SMOTE, STOMEK, and KINOS. The SMOTE is
applied in all resampling methods in this work and therefore
used as the baseline, the STOMEK is used as a representative
for methods that applies noise filtering after oversampling,
and the KINOS is used as a representative for methods that
handles noises before oversampling. Although the Borderline-

SMOTE uses similar procedure as the KINOS, it is shown that
when the KINOS is integrated with the Borderline-SMOTE as
oversampling method, the KINOS improves the performance
of the Borderline-SMOTE [44]. Therefore, the KINOS instead
of the Borderline-SMOTE is used here for comparison. From
Fig 11, one can see that in all noise level settings, the ”tprs”
has indeed enhanced the performance of the ”smote” by
removing noises before executing oversampling. Compared
with the ”stomek” and the ”kinos”, the ”tprs” still shows quite
large performance improvements, from 0.82% to 24.57% for
the ”stomek” and from 1.03% to 30.95% for the ”kinos” as
noise level increases. Moreover, the performance gains are
prone to enlarging, showing the effectiveness of the ”tprs”
on handling highly noisy imbalanced environments.

V. CASE STUDY: APPLICATION IN HUMAN ACTIVITY
RECOGNITION USING SENSOR DATA

Human activity recognition (HAR) is a fundamental com-
ponent to a broad range of application areas including am-
bient assistive living, connected health and pervasive com-
puting [56]. It is commonly used in rehabilitation systems
for monitoring the activities of elderly residents to support
the management, and also the prevention, of chronic disease.
Another common application area is HAR within smart homes,
as a key motivation behind HAR research is to monitor
the health of smart home inhabitants by tracking their daily
activities. In relation to promoting physical activity, HAR is
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Fig. 11. Average Performance Gains of the TPRS Compared with the
SMOTE, STOMEK, and KINOS

applied in rehabilitation centers that focus on stroke reha-
bilitation and those with motor disabilities [57]. HAR can
be generally deemed within two categories: either sensor-
based or vision-based activity recognition. Particularly, sensor-
based activity recognition has attracted considerable research
interest in ubiquitous computing due to advancements with
sensor technologies and wireless sensor networks [56]. A
frequently utilized wearable sensor for monitoring human
activities is the accelerometer, which is particularly effective
in observing movements such as walking, standing, sitting,
and ascending stairs [58]. However, among these recognized
activities, transitional activities are often discarded or the
recognition rates are quite low because their occurrence is
much lower and the duration is much shorter compared to
static and dynamic activities. In general, when transitional
activities occur, an online activity recognition system may
reduce the classification performance as these activities are not
specified in the training dataset or the system has not learnt
well on these activities with too few training samples.

There are a few reasons that make the recognition of the
transitional activities difficult. On one hand, compared to static
and dynamic activities, the occurrences of transitional activi-
ties are too low. Severe class imbalance hinders the recognition
of the transitional activities as the classifier is biased to the
majority classes (static and dynamic activities) and tend to
classify most events as static or dynamic activities. On the
other hand, people tend to perform consecutive activities which
interleave with each other, i.e. people perform activities one
by one which are not clearly separated by pauses, e.g. ”Stand-
to-Walk” interleaves with both ”Standing” and ”Walking”.
Additionally, it is difficult to define the exact start and end
time of an activity, i.e. noises are inherent in between the
activities.

A. Data Collection and Preprocessing

The sensor based human activity recognition dataset is
collected by the staff in Ulster University [59]. The sensor

data was collected using a tri-axial accelerometer placed on
each participant’s right wrist. Ten healthy adults (5 males
and 5 females) were asked to perform 12 activities in a
controlled laboratory environment. Three types of activities
are considered in this work, dynamic activities, for instance
walking and sweeping, static activities, for instance standing
and sleeping, and transitional activities, stand-to-walk and
walk-to-stand. The descriptions of the 12 activities are given
in Table V. Since transitional activities normally occur within
a very short duration, they were allowed to repeat for more
times to obtain sufficient data samples.

A total number of 2186855 data samples were recorded and
were further preprocessed into a HAR dataset with 15184 data
points and 77 features extracted from the time and frequency
domain according to the guideline in [59]. The characteristics
of this dataset are given in Table VI.

B. Experimental Results on the HAR Task using Sensor Data

Similar to the previous setup, the HAR dataset is randomly
divided into two halves, one for training and the other for
testing. The process is repeated for ten times to avoid random
effects. Five levels of noises are also introduced in this
datasets. The numeric results in terms of G-mean on the
HAR task using sensor data are given in Table VII. The
* symbol indicates that the ”tprs” significantly outperforms
the corresponding method with 95% confidence according
to Student’s T-test result. From Table VII, the ”tprs” yields
significantly better G-mean results than other methods in all
comparisons when noise level ranging from 5% to 40%. When
noise level is 0%, the ”tprs” yields better results than the
”none”, ”bsmote1”, ”bsmote2”, and the ”kinos” significantly.
The ”tprs” yields slightly lower G-mean than the ”smote” and
higher G-mean than the ”stomek”, but the differences are not
significant.

VI. CONCLUSIONS AND FUTURE WORKS

In this work, we propose a Two-Phase Resampling (T-
PRS) method for multi-class noisy imbalanced classification
problems. Noisy samples are identified and removed via a
SSM-based noise filter in the first phase to obtain a noise-
filtered dataset. The noise-filtered dataset is then oversampled
in the second phase to safely enhance the representation
of the minority classes to rebalance the class distributions.
After the TPRS, a multi-class classifier is trained based on
the noise-filtered rebalanced dataset, which is expected to
yield a high generalization capability. Experiments on nine
UCI multi-class imbalanced datasets with five levels of class
noises are carried out to analyze the performances of different
methods. Moreover, a real-world human activity recognition
task is taken as a case study to show the performance of the
proposed TPRS method. Experimental results show that the
TPRS significantly outperforms the state-of-the-art methods
in terms of G-mean.

Future works concerning the TPRS may include the fol-
lowing. For example, the MLPNN is used as the classifier for
all methods in comparisons. Different classifiers, for examples
RBFNN, SVM, and decision trees can be employed to analyze
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TABLE V
DETAILED DESCRIPTIONS OF THE TWELVE ACTIVITIES [59]

Activity Activity details
Static Activities
Class 1, Standing Standing still for 5 mins, the participants could stand still or stand still and talk, it is better not to move the arms and legs too

much.
Class 2, Watching TV Watching TV at smart home, with sitting on the sofa in whatever posture the participant feels comfortable for 5 mins, changing

sitting posture is allowed.
Class 3, Sleeping Lying on the sofa while doing nothing for 5 mins, small movements such as changing the lying posture are allowed.
Dynamic activities
Class 4, Walking 5 mins walking on treadmill with the set speed.
Class 5, Running 5 mins running on the treadmill.
Class 6, Sweeping 5 mins sweeping with the vacuum cleaner in the home area.
Transitional activities
Class 7, Stand-to-walk In order to capture the whole transition, the participant is told to perform the stand-to-walk-to-stand, standing still for 15s then

start to walk, keep walking for 15s, then standing still for 15s, repeat for 15 times. The first foot step movement and the last foot
step movement would be labeled. This transition will be divided into stand-to-walk and walk-to-stand in the data analysis phase.

Class 8, Walk-to-stand
Class 9, Stand-to-sit The participant is told to stand still for 15s and then sit on the chair. The start point is backward movement after standing, the end

point is sitting on the sofa (record finish point), repeat for 15 times.
Class 10, Sit-to-stand The participant is told to sit on the chair for 10s and then stand up. The start point is forward movement after sitting, the end

point is standing still (record finish point), repeat for 15 times.
Class 11, Sit-to-lie The participant is told to sit on the sofa for 15s and then lie down. The start point is backward movement after sitting, the end

point is lying on the sofa (record finish point), repeat for 15 times.
Class 12, Lie-to-sit The participant is told to lie on the sofa for 15s and then sit on the sofa. The start point is forward movement after lying on the

sofa, the end point is sitting on the sofa (record finish point), repeat for 15 times.

TABLE VI
CHARACTERISTICS OF THE PREPROCESSED HAR DATA

Dataset #samples #features Class Distribution IR
HAR 15184 77 2380/2378/2374/2328/2281/2340/182/182/185/188/180/186 13.22

TABLE VII
MEAN AND STANDARD DEVIATION VALUES OF G-MEAN PRODUCED BY DIFFERENT METHODS UNDER DIFFERENT NOISE LEVELS

noise level (%) none smote bsmote1 bsmote2 stomek kinos tprs
0 64.62±3.54* 75.91±1.29 73.73±1.67* 73.23±1.53* 75.29±1.33 74.63±1.64* 75.71±1.84
5 65.06±2.07* 71.03±1.60* 71.46±0.94* 70.46±1.88* 71.03±1.42* 70.86±2.20* 73.09±1.59
10 61.67±1.97* 66.95±1.52* 68.73±2.14* 69.36±1.57* 66.28±1.84* 67.52±2.18* 71.53±1.52
20 56.36±2.17* 59.95±2.49* 62.33±1.51* 61.50±2.12* 60.14±1.69* 61.04±2.74* 67.80±1.43
30 50.32±4.19* 52.60±2.67* 57.32±3.19* 56.56±3.53* 53.67±2.51* 54.58±2.36* 62.45±2.99
40 45.25±4.40* 48.97±3.87* 50.65±4.10* 47.57±3.60* 47.76±2.88* 45.70±3.07* 59.77±1.42

the effectiveness of the TPRS. In addition, the TPRS serves as
a wrapper method to deal with noisy imbalanced classification
problems, but only the off-the-shelf SMOTE is employed in
this work. Different oversampling methods can be applied
here to analyze the effects of different oversampling methods,
for examples the RWO method, Borderline-SMOTE, etc. One
limitation of the TPRS is that the Q-neighborhood in the
calculation of the SSM is only defined in real feature spaces.
Researches can be carried out to extend the definition of the Q-
neighborhood to binary and nominal feature space. Moreover,
the Q value is fixed in this work, how to determine the optimal
value for different datasets automatically remains an open
research problem. Another limitation of the TPRS is that the
OVO scheme is applied here to handle multi-class problems,
which has high time complexity. Effects of different schemes
can be analyzed and researched to lower the time complexity.
Finally, only oversampling is considered in this work to handle
imbalanced classification problems. The combination of the
undersampling and the SSM based noise filtering seems to be
a promising research area.
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